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1. INTRODUCTION
In the entire Euclidean space, we consider nonlinear weighted elliptic equations, in particular, their

typical representatives

(where  is a nonlinear weighted Laplacian) and

(where Δpu is a weighted p-Laplacian).
Both operators are heavily used in the elliptic and parabolic theories of second-order nonlinear differ-

ential equations (see, e.g., [1, 2]).
In a bounded domain, the solvability of corresponding boundary value problems is a well-known issue

that can generally be regarded as completely studied.
In the case of the complete Euclidean space ℝn, the situation is different, which is associated primarily

with the lack of the Friedrichs and Poincaré inequalities; i.e., the norm of a function cannot be estimated
in terms of its gradient in classical norms of Sobolev spaces.

Numerous well-known methods for studying quasilinear elliptic problems in ℝn (specifically, classical
and special variational methods and the method of monotone operators) can be found in [3], which deals
with equations of the form

where f : ℝn × ℝ → ℝ satisfies the Carathéodory condition with the additional condition

A weak solution is sought in the closure of the set of infinitely differentiable compactly supported func-
tions D(ℝn) with respect to the norm
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These methods are also applicable to the more general quasilinear equations

with p-Laplacian in the principal part.
Over the last decade, much attention has also been given to p-Laplacian equations defined in the entire

space.
For example, [4] is concerned with the equation

where 1 < p < n and the function g : ℝn × ℝ → ℝ satisfies the Carathéodory condition. Specifically, exis-
tence and blow-up theorems are proved for nontrivial nonnegative weak solutions u ∈  or u ∈

 such that

The regularity and qualitative properties of solutions are established.
The existence and uniqueness of a positive radially symmetric solution of the problem

in the class C1(ℝn) ∩ C2(ℝn\{0}), where 1 < p < ∞ and n ≥ 3, are analyzed in [5].
In [6] the existence and regularity of nontrivial positive weak solutions are investigated for the class of

elliptic problems

where 1 < p < n and α is a real constant such that 0 < α < p* – 1 with p* = . The weak solutions belong

to the class

The equation

where 1 < p < n, is studied in [7]. It is shown that the energy functional

has critical points, i.e., the equation has a weak solution.
Equations with p-Laplacian are also widely used in eigenvalue problems.
In this paper, the solvability of nonlinear weighted equations of the indicated form is analyzed on the

entire plane  without making any a priori assumptions about the asymptotic behavior of the desired
solution as |x| → ∞. However, we impose the additional condition that the average integral value of the
solution over some circle of radius R > 0 is equal to zero. In the presence of gradient estimates in the entire
space, this condition makes it possible to estimate the function itself with a corresponding weight. It turns
out that this is sufficient for the unique solvability of the problem.

First, however, we need weighted inequalities similar to the classical Hardy and Poincaré ones.
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2. TWO-SIDED HARDY INEQUALITIES

Let w(r) be a measurable almost everywhere positive function on an arbitrary interval (a, b), where 0 ≤
a < b ≤ +∞. In what follows, p > 1 is an arbitrary number and p' = p/(p – 1).

The task is, given an arbitrary number R ∈ (a, b), to find a nonnegative function  such that

(1)

where f(r) is an arbitrary measurable function on (a, b) for which the integral on the right-hand side of (1)
converges and the constant M > 0 is independent of R.

Remark 1. Since f(r) is arbitrary, (1) is equivalent to two Hardy inequalities:

(reverse Hardy inequality) and

(direct Hardy inequality). We will use both of them.

Theorem 1. Suppose that s = 1/(p – 1) and w–s belongs to (a, b), i.e., w–s is Lebesgue integrable in a
neighborhood of any point of (a, b). Then the weight function  can be defined as

where

the constants Ca and Cb are given by

δ(r) is the Dirac delta function; and M = [p/(p – 1)]p. In other words,

(2)

Proof. We need the following result.
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Lemma 1. It holds that

on (a, R) and (R, b), where

and

Proof. Obviously, only the last equality has to be checked. Indeed, using the Hölder inequality and
recalling the definition of , we obtain

as ε → 0.
Now, we will prove inequality (2). For example, consider the case of (a, R).
By Lemma 1,

Combining this result with the Hölder and Young inequalities yields

i.e., we obtain the desired inequality

The case of the interval (R, b) is treated in a completely similar manner. The theorem is proved.

Example 1. Let a = 0, b = ∞, and w(r) = rp – 1. Then μR(r) =  and Ca = Cb = 0; hence,

inequality (2) becomes (see [8])
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Example 2 (cf. [9]). Let q ≠ p be an arbitrary number, a = 0, b = ∞, and w(r) = r q – 1. Then μR(r) =

, where r ≠ R, α = (q – 1)/(p – 1), and

Thus, we have

if q < p and

if q > p.
Remark 2. Note that the regular part of the weight function  (i.e., μR(r)) is integrable at both

r = a and r = b. Thus, the measure μR(r)dr compactifies the real line. This is important in deriving Poin-
caré-type inequalities for functions defined in the entire plane.

3. POINCARÉ INEQUALITIES IN THE PLANE

Let x = (x1, x2) and y ∈ (ℝ2). The gradient ∇u(x) of u(x) is understood in the sense of generalized
functions (distributions). Assume that ∇u(x) is pth-power integrable in ℝ2 (p > 1) with weight w(|x|), i.e.,

Introducing the weight function w2(r) = w(r)r, where r = |x|, we assume that  ∈ (ℝ+). Further-
more, let

be the “canonical” weight defined in Theorem 1.
Theorem 2. Let

(3)

i.e., the average value of u(x) over the circle SR,2 ≡ {x ∈ ℝ2 : |x| = R} is zero. Then

(4)

where M > 0 is a constant and

Proof. Consider the integral
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Using the Poincaré inequality for periodic functions yields

First, we estimate the integral

where f(r) = . Note that νR,2(r)r ≤ μR,2(r). Moreover, by assumption, f(R) = 0. Therefore,
according to (2), we have

(5)

Consider the second integral

Since the Cartesian coordinates are linear in r, it holds that  ≤ Mrp|∇u|p. Therefore, in view of the

inequality νR,2(r) ≤ w(r)r–p, we obtain

Combining this relation with (5) yields the desired inequality (4).
Remark 3. The constant M > 0 in (4) depends only on p > 1.
Example 3. Let w(x) = |x|p – 2 and condition (3) be satisfied. Then
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Additionally, let condition (3) be satisfied. Then

where νR,2(r) = r–1min{μR(r), rq – 2 – p} and μR(r) is given by the formula

if q ≠ p and by formula (6) if q = p.
Consequences of (4) are the Poincaré-type inequalities

where

and

4. FORMULATION OF THE PROBLEM, THE BASIC SPACES, AND SOME INEQUALITIES
The problem is to find a solution of the equation
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Condition (8) means that the function u has a zero average value over some circle SR of radius R. The
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where  runs over a suitable Sobolev-type space.

Let w(r) be a measurable almost everywhere positive function on (0, +∞). Suppose that u ∈ (ℝ2)
satisfies condition (8) and its gradient ∇u belongs to the weighted Lebesgue space Lp, w(ℝ2), i.e.,

Then, by Theorem 2,

(*)

−ν ≤ ∇∫ ∫
� �

2 2

2
,2( ) ( ) ( ) ,p p q

R x u x dx M u x x dx

−−α+ −α+ −αμ = α − − ≠ α = − −1 1
,2 1 , , ( 1)/( 1)

pp
R R r r r R q p

ν − ≤ ∇∫ ∫
� �

2 2

,2( ) ( ) ( ) ( ) ,p p
R x u x C dx M u x w x dx

= ∫
,2

,2

1 ( )
mes

R
R S

C u x ds
S

⎛ ⎞
⎜ ⎟ν ≤ ∇ +⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ∫ ∫
� �

2 2
,2

,2( ) ( ) ( ) ( ) ( ) .
R

p

p p
R

S

x u x dx M u x w x dx u x ds

−

=

⎛ ⎞∂ ∂ ∂≡ − = ∈⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
∑ �

2

1

( ) , ,
n p

n
p

i i ii

u uu w x h x
x x x

A

=∫ ( ) 0,
RS

u x ds

−

=

∂ ∂ ∂ =
∂ ∂ ∂∑∫ ∫

� �
2 2

2 2

1

( ) ( ) ( ) ,
p

i i ii

u u w x dx h x x dx
x x x

v v

( )xv
loc
1L

∇ < ∞∫
�

2

( ) ( ) .pu x w x dx

ν ≤ ∇∫ ∫
� �

2 2

,2( ) ( ) ( ) ( ) ,p p
Ru x x dx M u x w x dx



www.manaraa.com

416

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 57  No. 3  2017

GOLUBEVA, DUBINSKII

where

and

is the canonical weight defined in Theorem 1; here, w2(r) = w(r)r,  ∈ (ℝ+), and s = 1/(p – 1).
By using the norms in the weighted spaces, inequality (*) can be rewritten the following form (the notation
is clear):
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which is hereafter designated for brevity as X, and let its norm be given by
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Proof. By definition (9) of the operator A : X → X*,

Let ξi = (∂u)/(∂xi), ηi = (∂ )/(∂xi), F(ξ) = , and ζ(τ) = η + τ(ξ – η), where 0 ≤ τ ≤ 1. We have

and, for ζ ≠ 0,

Then

For arbitrary numbers a and b, it is true that

where c > 0 is a constant. Using this inequality, we obtain
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ously valid). We have

Moreover, since the norms  and  are equivalent for any u ∈ X, it holds that
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5. MAIN RESULTS
Definition. A function u ∈ X is called a weak solution of problem (7), (8) with h ∈ X* if, for any func-

tion  ∈ X,

(13)

where A is an operator from X to X* defined by formula (9). The symbol  denotes the result of apply-
ing the functional h ∈ X* to the function  ∈ X.

Theorem 3. For any functional h ∈ X*, problem (7), (8) has a unique weak solution in the sense of above
definition.

Proof. Let the system  ⊂ X be complete in X. Let XN = span{ }, XN ⊂ X, and 
be dense everywhere in X.

An approximate solution uN ∈ XN has the form uN =  and satisfies the relation

(14)

The solvability of Eq. (14) is equivalent to the existence of a solution to the system

We have

By the definition of the norm ,

Combining this inequality with (12) yields

It follows that (P(c), c) > 0 if ||uN||X is sufficiently large. Since all norms in a finite-dimensional space
are equivalent, the inequality also holds for |c| = R, where R = R(h) is sufficiently large. Therefore, by the
acute angle lemma, there exists at least one point c such that P(c) = 0.

Setting  = uN ∈ XN in (14), we have

whence

(15)

Moreover, by virtue of the basic inequality (**), we have

(15')

where c0 = .

Thus, the sequence  is bounded in the reflexive space X and, hence, has a weakly limit point u(x) in
X. Without loss of generality, we can assume that
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It follows from (10) and (15) that

i.e., the sequence  is bounded in X*.
The space X* is reflexive as the dual of the reflexive space X. Therefore, we can assume (after choosing

a subsequence) that AuN  a ∈ X* weakly in X*.

Passing to the limit as N → ∞ in (14) and recalling that the system  ⊂ X is complete in X, we
obtain

i.e., a = h in the sense of X*.
Thus,

(17)

We have  ∈ X

Combining this result with (16) and (17) and setting N → ∞ yields

Let  = u – ξw, where w ∈ X is arbitrary and ξ → +0. Then the last inequality implies that

Since w ∈ X is arbitrary, the last inequality holds only if h = Au as elements of X*. This means that (13)
holds for any  ∈ X; thus, the found element u ∈ X is a weak solution.

The uniqueness of u can be proved using inequality (11). Indeed, assume that there are two functions u1,
u2 ∈ X such that Au1 = h and Au2 = h in the sense of X*. Then

where c > 0 is a constant. Combining this with the condition w(|x|) > 0, x ∈ ℝ2, we see that ∇(u1 – u2) = 0, i.e.,
u1 – u2 = const almost everywhere in ℝ2. Since u1 and u2 satisfy condition (8), we obtain u1 = u2.

The theorem is proved.

A posteriori remark. Let us show that the sequence  ⊂ X of approximate solutions converges to
the weak solution u ∈ X not only weakly, but also strongly.

Let u ∈ X be the weak limit in (16). According to (11),

On the left-hand side, by virtue of (14) with  = uN, the equality Au = h as elements of X*, and relation (17),
we have

This means that

(18)
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This function defines a linear bounded functional h ∈ X* given by the formula

Indeed,

(19)

and (**) implies that

Then

,

and it follows from (15') with (18) that

(20)

where c = .

Thus, for h ∈ , problem (7), (8) is well-posed; i.e., it has a unique weak solution uh ∈ X sat-
isfying identity (13):

moreover, the a priori estimate (20) holds.
Let us show the necessity of the basic inequality (**) for the problem to be well-posed. We have

whence

where Mh > 0 is a constant.

This inequality means that the set of linear functionals  acting on elements h ∈  and
given by the formula
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whence

Thus, the following result holds in the case h ∈ .
Theorem 4. The well-posedness of problem (7), (8) is equivalent to the validity of inequality (**).
The general second-order nonlinear weighted equation

is treated in an entirely similar fashion under the natural growth and coercivity conditions imposed on the
functions Ai, i = 1, 2.
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